
Paul Klein
January 31, 2022

Further notes on root finding in one dimension

In Kopecky’s notes on root finding, she discusses bisection, Newton’s method, the
secant method and Brent’s method. (She also discusses Broyden’s method, but that
is for multidimensional problems.) Here we will discuss some further methods that
are faster than bisection and more robust than the secant method.

Incidentally, what is wrong with Newton’s method? The problem is that it is in
fact slower than the secant method, if we take into account the number of function
evaluations per iteration. To deal with this, Traub (1964) defines an efficiency index
as follows:

E :=
k

d

where k is the order of convergence as defined as in Kopecky’s notes on root finding
and d is the number of function evaluations per iteration. Given that Newton’s
method requires (at least) two function evaluations per iteration, its efficiency index
is 1, or no better than bisection.

Traub (1964) also defines an alternative efficiency index as follows.

E∗ := k1/d.

According to this criterion, Newton’s method has an (alternative) efficiency index
of
√
2, which is better than bisection but still worse than the secant method, whose

efficiency index is about 1.62 (see below). It is this alternative efficiency index that
has caught on in the literature. That is no coincidence. The point is the following.
Let’s compare Newton’s method (k = 2, d = 2) with a hypothetical method that
raises the error to the power k =

√
2 in each iteration but only requires one function

evaluation per iteration (d = 1). They are equally efficient in the sense that two
function evaluations are required to square the error. And indeed they have the
same alternative efficiency index E∗ =

√
2.

1

http://paulklein.ca/newsite/teaching/Notes_RootFindingMethods.pdf
http://paulklein.ca/newsite/teaching/Notes_RootFindingMethods.pdf

1 The secant method and its basic problem

The secant method is described as follows. It begins with an interval [a0, b0]. For
any interval [ak, bk], a third point ck is computed as follows.

ck =
akf(bk)− bkf(ak)
f(bk)− f(ak)

.

Incidentally, this formula is better from a computational point of view than the
following more obvious alternative:

ck = bk − f(bk) ·
bk − ak

f(bk)− f(ak)
.

The reason why the former is superior to the latter is that the difference bk− ak has
the property that the difference is much smaller in magnitude than the constituent
terms. It can be written, in other words, as x + ε − x, where ε is small relative
to x. We know from basic principles of finite-precision arithmetic that this turns
into garbage once ε is smaller than x by enough orders of magnitude. Meanwhile,
f(bk)−f(ak) is not as bad as it looks, because, when things are going well, f(ak) and
f(bk) have opposite sign and so we are in fact dealing with a sum, not a difference.

In any event, the secant method then proceeds iteratively by setting ak+1 = bk and
bk+1 = ck. If it converges, then the limiting convergence order is superlinear with
k ≈ 1.62, the golden ratio. Notice that the golden ratio is strictly greater than
√
2, rendering the secant method more efficient than Newton’s method according

to Traub’s alternative efficiency index. To show the result, we begin by invoking
Newton’s interpolation formula1

f(x) = f(ck) +
f(ck)− f(ck−1)

ck − ck−1
· (x− ck) +

1

2
f ′′(ξ) · (x− ck−1) · (x− ck) (1)

for some number ξ in the interval spanned by x, ck−1 and ck. Now call the solution
to our equation x∗ so that f(x∗) = 0 and put x = x∗ in Equation (1). We get

f(ck) +
f(ck)− f(ck−1)

ck − ck−1
· (x∗ − ck) +

1

2
f ′′(ξ) · (x∗ − ck−1) · (x∗ − ck) = 0.

1See, for instance, Dahlquist and Björck (1974), Section 7.3.3.

2

By definition of the secant method, we have

f(ck) + (ck+1 − ck) ·
f(ck)− f(ck−1)

ck − ck−1
= 0

so that

f(ck)− f(ck−1)
ck − ck−1

· (x∗ − ck+1) +
1

2
f ′′(ξ) · (x∗ − ck−1) · (x∗ − ck) = 0.

According to the mean-value theorem, there is an ξ′ ∈ [ck−1, ck] such that

f ′(ξ′) =
f(ck)− f(ck−1)

ck − ck−1
.

Defining ek := x∗ − ck, we conclude that

ek+1 =
f ′′(ξ)

2 · f ′(ξ′)
· ek · ek−1. (2)

Now conjecture that f ′′(ξ)
2·f ′(ξ′) converges. Then when k is large, we have, for some

positive number C,
|ek+1| ≈ C|ek||ek−1|. (3)

Suppose |ek+1| ≈ K|ek|p for all sufficiently large k; if true, then the convergence order
would be p. Substituting this, and |ek| ≈ K|ek−1|p or, rather, |ek−1| ≈ K−1/p|ek|1/p, into
Equation (3), we get

K|ek|p ≈ CK−1/p|ek||ek|1/p

and this can only hold if
p = 1 + 1/p.

This is of course the equation of the golden ratio. (Fortunately, we can ignore the
smaller solution.)

Anyhow, the fundamental problem with the secant method is that it can easily es-
cape from the initially given interval. If we know that the solution is bracketed by
our initial interval, then this is very bad. It is particularly bad if the function is not
even well-defined everywhere outside the given interval. For instance, consider the
function f(x) := 1 − 1/x5. We know that a root is bracketed by [0.5, 1.5]. Starting
from this interval, the subsequent interval is [1.5, 1.47]. So far, so good. (The fact

3

that the interval is oriented backwards is strange but not obviously problematic.)
But the next interval is [1.47,−0.37]. This is a wider interval than we started with,
and it contains the highly problematic point x = 0. Further iterations on the secant
method diverge.

The secant method can be salvaged by alternating between bisection and the secant
method, but a more obvious approach is the ancient method of false position, or
regula falsi.

2 The method of regula falsi

The false position method computes ck just as in the secant method, but it then
proceeds in either of two ways, depending on circumstances. If the convergence cri-
terion has not been met, but f(ck) and f(ak) are of opposite sign (equivalently, if
f(ck) and f(bk) have the same sign), the algorithm concludes that the solution lies
between ak and ck. It therefore updates according to ak+1 = ak and bk = ck. Alter-
natively, if f(ck) and f(ak) have the same sign, the conclusion is that the solution
lies between ck and bk and hence the updating proceeds according to ak+1 = ck and
bk+1 = bk.

Notice that this approach, though it looks a lot like bisection, does not guarantee
that the interval [ak, bk] converges to a width of zero even if f is strictly monotonic on
the interval [a0, b0], and f(a0) and f(b0) are of opposite sign. On the contrary, under
these assumptions, if f is increasing and convex, then bk never moves and if f is
increasing and concave, then ak never moves. In either case, f(ck) never changes
sign. This undesirable property slows down the algorithm spectacularly, reducing
the order of convergence to linear, so that it is no better than bisection. This is of
course pretty disastrous given all the effort we invested in learning an algorithm
that was supposed to be faster than bisection.

4

3 The Illinois algorithm

Fortunately, the regula falsi method can be salvaged. The so-called Illinois algo-
rithm is a very minor modification of the false position method, and it solves the
problem described above. The modification involves halving the retained function
value whenever the new function value has the same sign as the function value
at the current upper bound. The purpose of this is to avoid retaining an endpoint
indefinitely. As demonstrated in Dowell and Jarratt (1971), the Illinois algorithm
exhibits superlinear convergence with (alternative) efficiency index E∗ = 31/3 ≈ 1.44,
only slightly worse than the secant method. Moreover, it is as robust as bisection
or regula falsi.

Here is a more explicit description. Denote the current left endpoint by x0, the
current right endpoint by x1, the current function value at the left endpoint by y0
and the current function value at the right endpoint by y1. Now define

x :=
x0y1 − x1y0
y1 − y0

as in the secant method and y := f(x). Then if y ·y1 < 0, replace (x0, y0) with (x1, y1).
Otherwise, replace y0 with 0.5 · y0 and don’t update x0. Either way, replace (x1, y1)

with (x, y).

Incidentally, there is of course no guarantee that x0 < x1 and so the phrase “left
endpoint” is misleading. (Obviously the algorithm is not affected by the use of this
misleading language.) If we are pedantic, we can redescribe the algorithm in the
following way. Let xn−1 and xn be given. Define yn−1 := f(xn−1) and yn := f(xn). Let

x :=
x0y1 − x1y0
y1 − y0

and y := f(x). If y · yn < 0, then xn+1 = x. Otherwise,

xn+1 =
xn−2yn − 1

2
xnyn−2

yn − 1
2
yn−2

.

Either way, yn+1 = y.

5

4 The Pegasus algorithm

Rather than multiply the retained function value by a half, as in the Illinois algo-
rithm, the so-called Pegasus algorithm multiplies it by y1

y1 + y
. Dowell and Jarratt

(1972) demonstrate that this approach implies an asymptotic (alternative) efficiency
index of about E∗ ≈ 1.64, so even better than the secant method.

5 The Anderson-Björck algorithm

According to Galdino (2011), the state of the art algorithm is the one in Anderson
and Björck (1973). Instead of multiplying y0 by y1

y1 + y
, it multiplies it by either

y1 − y
y1

if that is strictly positive, or by 0.5 otherwise.

This algorithm has an asymptotic (alternative) efficiency index between E∗ = 81/4 ≈
1.68 and E∗ = 51/3 ≈ 1.71. In the worst case, it is still the best of the algorithms
presented here.

6 Horse race

Consider again the function f(x) := 1− 1/x5, suppose our initial interval is [0.5, 1.5]
and suppose we require a precision of 10−12 both for the function value and for the so-
lution. Then bisection requires ceil(log2(1012)) = 40 iterations, the Illinois algorithm
uses 14, the Pegasus algorithm 12 and the Anderson-Björck algorithm takes 10 it-
erations. In terms of execution time, the Illinois algorithm is about 3 times faster
than bisection; the Pegasus method about 3.5 times faster. Finally, the Anderson-
Björck algorithm is about 4 times faster than bisection.

Another example is f(x) := 1 − 1/x with the same initial interval and tolerances
as before. Then, as usual, the bisection algorithm takes 40 iterations. The Illi-
nois algorithm takes 9 iterations, the Pegasus method takes 8, and, finally, the
Anderson-Björck algorithm takes just 3 iterations. In terms of execution time, the
Anderson-Björck method is more than 8.5 times faster than bisection, while the Pe-

6

gasus method and the Illinois methods are both about 4 times faster than bisection.
All of these execution time results are very sensitive to the software that you use.
However, the superiority of the Anderson and Björck (1973) method is robust.

References

Anderson, N. andÅ. Björck (1973, Sep). A new high ordermethod of regula falsi type
for computing a root of an equation. BIT Numerical Mathematics 13(3), 253–264.

Dahlquist, G. and Å. Björck (1974). Numerical Methods. Dover Publications, Inc.,
Mineola, New York.

Dowell, M. and P. Jarratt (1971, Jun). A modified regula falsi method for computing
the root of an equation. BIT Numerical Mathematics 11(2), 168–174.

Dowell, M. and P. Jarratt (1972, Dec). The “Pegasus” method for computing the root
of an equation. BIT Numerical Mathematics 12(4), 503–508.

Galdino, S. (2011). A family of regula falsi root-finding methods. http://

sergiogaldino.pbworks.com/w/file/fetch/66011429/0130-1943543.

Traub, J. F. (1964). Iterative methods for the solution of equations. Prentice Hall,
Inc., Englewood Cliffs, N. J.

7

http://sergiogaldino.pbworks.com/w/file/fetch/66011429/0130-1943543
http://sergiogaldino.pbworks.com/w/file/fetch/66011429/0130-1943543

Appendix A: suggested Matlab code for the Illinois algorithm

function x = illinois(f,x0,x1,xtol,ftol,maxiter)

% f is a string containing the name of the function

% x0 is a lower bound of the solution

% x1 is an upper bound of the solution

% ftol is the function tolerance

% xtol is the solution tolerance

% maxiter is the maximum number of iterations allowed

xdev = 1;

iter = 0;

y0 = feval(f,x0);

y1 = feval(f,x1);

x = x0;

y = y0;

while (xdev>xtol || abs(y)>ftol) && iter<maxiter

newx = (x0*y1 - x1*y0)/(y1-y0);

xdev = abs(x-newx);

x = newx;

y = feval(f,x);

if y*y1<0

x0 = x1;

y0 = y1;

else

y0 = 0.5*y0;

end

x1 = x;

y1 = y;

iter = iter + 1;

end

8

Appendix B: suggested Matlab code for the Pegasus algorithm

function x = pegasus(f,x0,x1,xtol,ftol,maxiter)

% f is a string containing the name of the function

% x0 is a lower bound of the solution

% x1 is an upper bound of the solution

% ftol is the function tolerance

% xtol is the solution tolerance

% maxiter is the maximum number of iterations allowed

xdev = 1;

iter = 0;

y0 = feval(f,x0);

y1 = feval(f,x1);

x = x0;

y = y0;

while (xdev>xtol || abs(y)>ftol) && iter<maxiter

newx = (x0*y1 - x1*y0)/(y1-y0);

xdev = abs(x-newx);

x = newx;

y = feval(f,x);

if y*y1<0

x0 = x1;

y0 = y1;

else

y0 = y0*y1/(y1+y);

end

x1 = x;

y1 = y;

iter = iter + 1;

end

9

Appendix C: suggested Matlab code for Anderson-Björck

function x = andersonbjorck(f,x0,x1,xtol,ftol,maxiter)

% f is a string containing the name of the function

% x0 is a lower bound of the solution

% x1 is an upper bound of the solution

% ftol is the function tolerance

% xtol is the solution tolerance

% maxiter is the maximum number of iterations allowed

xdev = 1;

iter = 0;

y0 = feval(f,x0);

y1 = feval(f,x1);

x = x0;

y = y0;

while (xdev>xtol || abs(y)>ftol) && iter<maxiter

newx = (x0*y1 - x1*y0)/(y1-y0);

xdev = abs(x-newx);

x = newx;

y = feval(f,x);

if y*y1<0

x0 = x1;

y0 = y1;

else

g = 1.0-y/y1;

g = 0.5*(g<=0) + g*(g>0);

y0 = g*y0;

end

x1 = x;

y1 = y;

iter = iter + 1;

end

10

	The secant method and its basic problem
	The method of regula falsi
	The Illinois algorithm
	The Pegasus algorithm
	The Anderson-Björck algorithm
	Horse race

